Boron-based organometallic nanostructures: hydrogen storage properties and structure stability.

نویسندگان

  • Yufeng Zhao
  • Mark T Lusk
  • Anne C Dillon
  • Michael J Heben
  • Shengbai B Zhang
چکیده

Transition-metal (TM) boride and carboride nanostructures are studied as model organometallic materials for hydrogen storage. The dispersed TM atoms function as H2 sorption centers on the surface of the boron or carbon-boron substrate. The flexibility offered in the variety of possible structures permits the study of the effect of the TM-TM distance on the storage capacity. When the TMs are too close to one another, TM-TM bonding reduces the capacity. Even when separated by distances larger than the normal TM-TM bond length, delocalization of TM valence electrons can still lower the hydrogen capacity. An optimal TM-TM distance for the structural motifs studied here is approximately 6 A. Our study also permitted the evaluation of new TM boride nanostructures. We predict a low-energy single-walled scandium triboride (ScB3) nanotube that can bind approximately 6.1 wt % hydrogen with a binding energy of 22 approximately 26 kJ/mol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diamond fragments as building blocks of functional nanostructures

Using density functional theory, we investigate the equilibrium structure, stability, and electronic properties of nanostructured, hydrogen-terminated diamond fragments. The equilibrium atomic arrangement and electronic structure of these nanostructures turn out to be very similar to bulk diamond. We find that such diamondoids may enter spontaneously into carbon nanotubes. Polymerization inside...

متن کامل

EFFECTS OF TiO2 ADDITIVE ON ELECTROCHEMICAL HYDROGEN STORAGE PROPERTIES OF NANOCRYSTALLINE /AMORPHOUS Mg2Ni INTERMETALLIC ALLOY

Abstract: Mg2Ni alloy and Mg2Ni–x wt% TiO2 (x = 3, 5 and 10 wt %) composites are prepared by mechanical alloying. The produced alloy and composites are characterized as the particles with nanocrystalline/amorphous structure. The effects of TiO2 on hydrogen storage properties are investigated using anodic polarization and electrochemical impedance spectroscopy. It is demonstrated that the initia...

متن کامل

Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capaciti...

متن کامل

Computational study of energetic, stability, and nuclear magnetic resonance of BN nanotube as a nanosensor

Now a day study on boron nitrid nanotubes are in considerable attetion due to their unique properties in different field of science. In this letter, after final optimization, thermodynamic properties analysis, stabilities, electronic structure and nuclear magnetic resonance parameters including σ isotropic and σ anisotropic tensors and asymmetric parameters of 15N and 11B nuclei are calculated....

متن کامل

Comparison of metal additives and Boron atom on MgH2 absorbing-desorbing characteristics using calculated NQCCs

Using ab initio calculations, the hydrogen desorption from Magnesium hydride (MgH2) was studied. We presented the calculated nuclear quadrupole coupling constants (NQCCs) of hydrogen atom in various systems of MgH2. The effect of interactions of some metal atoms as well as Boron atom with MgH2 host matrix; (MgH2+M) nanostructures (M=Al, Ti, V, Fe, Ni ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2008